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Human-induced climate-change is modifying the established terrestrial
and regional weather patterns. This is leading to unexpected cultural,
economic, environmental, and social changes in most of the under- and
developing countries. Although scientific programs and technologies are
available to monitor and forecast the weather and climate extremes at
different scales there are however very few methods available to model
the consequent impacts on various sectors of society. In the context of
hydro-meteorological extremes, droughts and floods are most projected
natural disasters to increase in frequency and intensity. IFPRI (2013)
stated that agriculture accounts for more than 50 percent of GDP in
Burundi, DRC, Ethiopia, Sudan and Tanzania, while it accounts for less
than 30 percent of GDP in Eritrea, Kenya and Madagascar. Increased
frequency of droughts and floods in these countries would not only
disturb the primary economy-driver but also disrupt the value chain
linking the secondary and tertiary sectors with agriculture.

Floods are characterized by periods where above-normal rainfall cause
overland and riverine inundations. Their times of onset and ending are
distinct; whose affected areas are well defined (flood plains); and whose
hazard is measured in terms of depth of inundation and/or above-normal
discharges. On the other hand drought is considered as a creeping
phenomenon whose starting point is indistinct; it spread varying in terms
of weeks to decades depending on the hydro-climatic characteristics of
the region. Drought impact depends on the inter-dependence between the
rainfall, its deviation from normal, and the demands of the agencies for
survival (http://drought.unl.edu/DroughtBasics/WhatisDrought.aspx). In
the context of agriculture, droughts cause physiological (than physical)
damage to crops and this further complicates the assessment mechanism
as crops have non-linear response to water deficit; and possess a
certain degree of resilience to water deficits. In the <context of
agricultural drought risk assessment, it becomes very important to first
understand the conceptualization of drought before establishing
mechanisms for modeling its risks in agriculture.

UNISDR (2009) defined drought as a precipitation-deficiency over an
extended period of time (one growing season or longer) causing critical
shortages for water-dependent activities, groups, and environmental
sectors. That report highlighted that the droughts are temporary natural
aberrations whose characteristics vary significantly from region to region
and are different from «climatic features Ilike aridity observed in
perpetually low rainfall regions of the world. Wilhite and Glantz (1985)
analyzed more than 150 definitions all over the world and grouped them
into 4 major categories, namely meteorological, agricultural,
hydrological and socio-economic droughts, and figure 1 summarizes their
inter-relationships.
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Fig. 1 Drought typologies and the cascading impact relationships
(Source: National Drought Mitigation Center, University of Nebraska-
Lincoln, USA (http://www.drought.unl.edu/DroughtBasics/TypesofDrought.aspx)

Sivakumar et al. (2011) observed that although many meteorological
indices of agricultural droughts are available and often used, they are
less than ideal because pertinent physical and biological factors are not
built in to them. It was recommended, rather, that an agricultural drought
index should integrate precipitation and temperature, along with

evapotranspiration (ET) and soil moisture deficits for effective
monitoring of agricultural droughts affecting rainfed crops, pasture, and
rangeland. Note that irrigated agriculture can suffer production

shortfalls due to water shortages stemming from inadequate stream flow,
ground water pumpage, and/or reservoir storage.

With regard to planning, Wilhite (1991) published a 10-step generic
process for developing drought risk management plans and capacity
building activities in drought prone countries of the world. Monnik (2000)
proposed a drought early warning system (DEWS) that would provide the
decision maker with objective information on the onset, continuation, and
termination of drought conditions with the following data: (1)
meteorology, (2) crop area and production, (3) food and forage prices,
(4) drinking water, and (5) household vulnerability data in near real
time.

Wilhite and Svoboda (2000) reviewed the state-of-the-practice
summarizing the DEWS in Brazil, Hungary, India, Nigeria, South Africa,
and the United States. They highlighted the then prevailing systemic and
methodological inadequacies, namely the lack of a well-defined common
drought index (or indices), inadequate density and data quality of hydro-
meteorological parameters, restrictions regarding timely data sharing,
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non-user-friendly information products, incomplete and piecewise
analyses of the drought phenomenon, lack of clear drought impact
assessment methodology, unreliable drought forecasting, inadequate
dissemination systems, and lack of a global drought assessment system
in the world. Since then progress has been made, for example, with the
National Integrated Drought Information System (NIDIS) in the U.S.,
which has piloted sub-national drought early warning systems in several
important river basins (www.drought.gov). On a related note, the GAR
(2011) highlighted the continuing absence of a credible drought risk
mechanism, which was attributed to various hydro-meteorological
observational challenges as well as the socio-economic drivers such as
poverty and rural vulnerability, industrialization and urbanization, and
weak and ineffective governance.

UNDP (2011) identified 5 basic steps in the mainstreaming philosophy of
drought risk management (DRM): (1) identify stakeholders and establish
a coordination mechanism, (2) assess hazard trends and vulnerabilities
(the basis for a drought risk database and drought risk profiles), (3)
identify mitigation measures and evaluate where these will be integrated,
(4) incorporate the measures in the development of policy and planning,
and (5) monitor and evaluate the impacts of the entire mechanism. The
backbone of the entire DRM philosophy hinges on the accuracy of the
drought profiling in a given area, essentially consisting of analyzing long
term climate records, understanding the changes in the seasonal
distribution of weather parameters, land use/land cover changes, crop
practices, and hydrologic records. A functioning drought early warning
system (DEWS) would accomplish the drought profiling tasks and fulfill
the prerequisites of the long-term goals of DRM philosophy.

There are currently three institutions that map and monitor droughts and
issue monthly warnings on food security at global level: the FAQO’s
Global Information and Early Warning System on Food and Agriculture
(GIEWS), the Humanitarian Early Warning Service (HEWS) by the World
Food Program (WFP) which takes inputs from the Famine Early Warning
System NETwork (FEWSNET), and the Benfield Hazard Research Center
of the University College London (Grasso 2004). In the context of
operational monitoring of famine conditions and food insecurity in the
drought prone countries in Africa, there are three institutions namely the
USAID-funded FEWSNET, the European Union funded Monitoring
Agriculture with Remote Sensing (MARS), the Netherlands based
Environmental Analysis & Remote Sensing (EARS) funded food
assessment by satellite technology (FAST) service, and the experimental
Africa RiskView platform sponsored by the UN WFP.

The U.S. Agency for International Development (USAID) created FEWS
NET in mid 1980s with the goal of mitigating the agro-meteorological
shocks especially in the food insecure countries of Africa and Latin
America. The objectives of the FEWS NET system are three-tiered (Funk
and Verdin 2010): vulnerability identification and impact assessment,
development of appropriate <contingency plans, and design and
implementation of timely disaster relief packages. The U.S. Geological
Survey (USGS), National Aeronautics and Space Administration (NASA),
the National Oceanic and Atmospheric Administration (NOAA) along with



regional experts in FEWS NET countries participate in helping meet
these objectives.

FEWS NET monitoring of drought conditions is based on a number of
remotely sensed products. Satellite rainfall estimates (RFE2) (Xie and
Arkin 1997), which combine satellite thermal infrared measurements with
microwave and station data to derive many products such as the SPI,
crop, soil moisture and runoff models; and these are hosted on
http://earlywarning.usgs.gov/fews/africa/index.php. FEWS NET uses the
water requirement satisfaction index (WRSI) as a primary agricultural
drought hazard index as a proxy for crop yield. Verdin and Klaver (2002)
had demonstrated the use of WRSI algorithm to depict the root zone soil
water conditions in a gridded cell-based modeling environment. The
gridded WRSI is generated by customized software called Geospatial
Water Requirement Satisfaction Index (GeoWRSI) (Magadzire 2009).
GeoWRSI uses gridded estimates of satellite rainfall; potential
evapotranspiration (PET) (using the Penman-Monteith equation); soil
water holding capacity; and crop-specific characteristics such as the
length of growing period, and crop coefficients (K¢) (Doorenbos and
Pruitt 1977).

The United Nations International Strategy for Disaster Reduction
(UNISDR) publishes Global Assessment Report (GAR) addressing all
types of disaster risk reduction, including drought. In some of the most
drought vulnerable areas of the world there are significant difficulties in
getting data to develop risk models, especially from the famine and
drought affected countries in Africa. The GAR 2011 reported that in the
absence of a credible drought risk model, there is a need to understand
agricultural drought impacts and losses using appropriate soil moisture
based drought hazard indices.

The UNISDR and the FEWS NET initiated a collaborative study in 2012 to
identify and develop a probabilistic agricultural drought risk methodology
using satellite estimated rainfall (Phase 1) for GAR13 report. As the
emphasis was on agricultural drought risks, following definition of
agricultural drought was adopted in the above study: agricultural drought
is characterized by loss in crop production as a result of reduction in
crop area and/or lowering of crop yield due to shortage of soil water in
its root zone; the loss of crop yield at the end of the season interpreted
as a function of the actual crop evapotranspiration deficit relative to its
potential evapotranspiration demand”. Standard risk analysis steps -
hazard, exposure, and vulnerability were followed; continuous loss
exceedance probability (LEP) curves for maize in Rift Valley, Kenya,
Malawi and Mozambique, and millets in Niger were generated using the
historical and long term synthetic rainfall data for GAR 13 report. A
detailed description of the study area, data used; the procedural steps
are described in see Appendix A. The risk metrics (average annual loss
and other standard return period losses) generated, and corresponding
drought frequency maps are published in Harikishan and Husak (2014).

In view of the increasing evidence of the changing climate, and the
importance of assessing its impacts on rainfed crop productivity in
drought and famine prone countries of Africa, the scope of the UNISDR-
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FEWSNET collaborative study was expanded by expanding its objective
to generating LEP curves (for maize in Rift Valley, Kenya, and for millets
in Niger in West Sahel) using probabilistic analysis of agricultural
drought risks for probable near-future climate scenario (2016_2035) for
the GAR15 report (Phase 2).

Following sections highlight different components in phase 2 of this
study and results obtained:

The results of the UNISDR-FEWSNET collaborative study on agricultural
drought risk analysis in phase 1 used satellite RFE (Harikishan and
Husak 2014). The main improvement of hazard analysis in phase 2 of
this study has been the use of CHIRPS (Funk et al. 2014) data (in place
of satellite RFE). While satellite RFE data (Xie and Arkin 1997) was
available from 2001 onwards, CHIRPS data is available from 1981
onwards are available till present date. This enlarged satellite estimated
rainfall data set has become an invaluable input in the present study.

CHIRPS (Climate Hazards group InfraRed Precipitation with Stations)
precipitation grids (50°S-50°N, 180°E-180°W at 0.05° at 5— and 10-day
intervals) are generated by the U.S. Geological Survey Earth Resources
Observation and Science Center in collaboration with University of
California, Santa Barbara Climate Hazards Group. The main data sources
for generating CHIRPS data are (i) the monthly precipitation grids of
climatology describing 5- and 10-day long-term average accumulated
rainfall and which represent expected sequences of rainfall at each
location for the above periods; (ii) gquasi-global geostationary thermal
infrared (IR) satellite observations from 2 NOAA sources, the CPC
(Climate Prediction Center) 0.5 hour temporal resolution and 4 sqg.km
spatial resolution data (2000-present), and NCDC (National Climatic
Data Center) B1 IR (3 hour temporal resolution and 8 km spatial
resolution data for 1981-2000) (iii) the Tropical Rainfall Measuring
Mission (TRMM) 3B42 product from NASA; (iv) atmospheric model rainfall
fields from the NOAA Climate Forecast System, version 2 (CFSv2); all of
which are reinforced by (v) using in situ precipitation observations
obtained from a host of ground rain gauge stations and variety of
sources including national and regional meteorological services (Funk et
al. 2014).

The quasi-global CHIRPS precipitation grids have been generated in the
following manner: (i) InfraRed Precipitation (IRP) rainfall estimates (mm)
have been generated (from thermal satellites) by converting the
percentage of time the cold cloud top temperatures remain below the
threshold (<235° K) into millimeters of precipitation (using previously
available local TRMM 3B42 precipitation calibrations), (ii) the above
rainfall estimates have been normalized by dividing them with
corresponding long-term (1981-2012) means, (iii) the percent of normal
InfraRed accumulations have been multiplied by the corresponding
climatological (average expected normal values) to produce an unbiased
gridded estimates, and (iv) the final precipitation grid (CHIRPS) is
obtained by blending it with the ground rain gauge network data (Funk et
al. 2014).



In the present study, the dekadal CHIRPS data has been used to re-
generate the baseline (1981 2010) LEP curves for the GAR15 report.
These new LEP curves are more comprehensive as they include more
historical drought-event losses that have occurred since 1981 in the
study areas. It is important to note that the increased depth of CHIRPS
data has a two-fold benefit (i) help in generating more representative
long-term synthetic rainfall time series (500 vyears) for baseline
(1981 _2010) scenario, and (ii) facilitate improved forecasting of rainfall
regime corresponding to 2016_2035 climate scenario.

The IPCC AR5 (IPCC 2014) states that the impacts from climate-related
extremes viz., heat waves, droughts, floods, and such, highlight
significant vulnerability of natural and human ecosystems caused by the
changing climate variability. The projected climate warming has been
defined under two emission scenarios (low and high) characterized as
representative concentration pathways (RCPs 2.6 and 8.5) respectively.
Further, it is deduced that the risks evolving in near-term (2010-2050)
will emanate from the interactions among the changing climate, natural
and man-made ecosystems, and socio-economics; with the adaptations
influencing the near-term outcomes. Again, it is stated that the second
half of the 21st Century (2050-2100) and beyond, will be influenced by
global temperature- increase corresponding as per the divergent
emission scenarios; with near- and long-term adaptation and mitigation
measures, and the development pathways determining the consequent
risks.

There are about 24 different GCMs developed by more than a dozen
climate research centers around the world in support of the IPCC
activities. The corresponding projections have been observed to be
markedly different due to different numerical modeling methods, spatial
resolutions and sub-grid scale parameters. Villegas and Jarvis (2010)
observed that there are different downscaling technigues - smoothing,
spatial interpolation, statistical or neural network approaches, applied to
coarse resolution GCM (Global Climate Model) outputs (cell size of 300
km) for modeling the climate-impacts on biodiversity, natural and man-
made ecosystems, species distributions, landscape planning and such.
While each downscaling technique varies in accuracy depending on
output resolution, computational ease and robustness, their selection
depends on the feasibility of computational processing and storage
facilities, topography of land, and availability of ground data to calibrate
the models. While spatial downscaling is costly, needs significant
computing space and time resources, whereas the statistical downscaling
tends to reduce variances and provides smoothed surfaces of probable
future climates. Consequently, the multitude of downscaled GCM
projections have been observed to generate varied forecasts for future
climates; which in turn have resulted in significant scientific discord in
the projected impacts of climate change on agriculture and biodiversity
(Villegas and Jarvis 2010).

As the present study (phase 2) is focused on forecasting the impacts of
changing climate (which falls in the near-term i.e., 2016 _2035) on
agricultural productivity in Africa, a decadal-to-multidecadal (D2M)
approach (Enfield and Serrano 2006) has been adopted to generate



multivariate stochastic climate sequences representing the 2016 _2035
rainfall regime using historical climate data (1981 _2010) in the above
region. Enfield and Serrano (2006) reviewed the literature linking D2M
climate variability to circulation patterns in terrestrial oceans and seas:
ElI Nino-Southern Oscillation (ENSO)-like Pacific Decadal Oscillation
(PDO); the Interdecadal Pacific Oscillation (IPO); the Arctic Oscillation
(AO); the North Atlantic Oscillation (NAO); and the Atlantic Multidecadal
Oscillation (AMO); further correlating them to the ecological impacts,
natural disasters like floods and droughts in different parts of the earth.

The Climate Hazards Group at University of California, Santa Barbara
has noted a strong relationship in March-May (MAM) rainfall in the
Greater Horn of Africa and West Sahel to Sea Surface Temperatures
(SSTs) in the Indian and Pacific Oceans respectively. The approach used
in the present study recognized the strengths of climate models in
capturing variability and trends in Sea Surface Temperatures (SSTs),
while minimizing the impact of less reliable precipitation forecasts. As a
first step, a selection of runs from the Coupled Model Intercomparison
Project Phase 5 (CMIP5) were first compared with observed NOAA’s
Optimum Interpolation SST dataset to see how well the CMIP5 data lined
up with the best available estimates. With a confirmation of the CMIP5
ability to capture historic SSTs, the EIl Nino signal that dominates ocean
variability removed from the historical and forecast CMIP5 data, leaving
differences in SST. A 20 year composite of the forecast period from
2016-2035 resulting in a mean difference field to represent this period
was established. These forecast-difference fields capture less distinct
variability in the oceans, and may also negate any trends. The 20 year
composite was then compared to the CMIP5 differences from 1981-2013
to find the similarity with each individual year.

The above similarity-approach was used to derive weight for each year,
which in turn, was used in a bootstrapping scheme to derive 500
simulations of near-term (2016_2035) future rainfall regimes by sampling
from the CHIRPS dataset. These resulting simulations captured the
variability and trend resulting from forecast SST data, while retaining
spatial correlations inherent in decadal rainfall data. The ensuing long
term synthetic rainfall time series corresponding to near-term
(2016_2035) future climate scenario has now been used to run using
GeoWRSI (Magadzire 2009); the corresponding end-of-season WRSI
representing hazard time series for near-term (2016_2035) climate
scenario.

The availability of satellite estimated precipitation data from 1981
onwards has enabled the use of crop areal/yield statistics (at district
resolution) in the selected study areas in this study. Maize arealyield
statistics from 2001 to 2012 in Rift Valley, Kenya; from 1984 to 2009 in
Malawi; and millets areal/yield statistics from 1983 to 2007 in Niger have
been used to expand the exposure data base. In addition, the extended
data has also facilitated modeling the historical drought-induced maize
and millets production losses from mid-80s in the above countries. It is
important to note in the extended exposure data that, similar to the
observation in the earlier study, the drought impact on crop production



was reflected more prominently in (rainfed) crop yields than in crop
areas.

Modeling of drought vulnerability functions for the selected crops
consisted of developing the relative yield deficit versus relative ET
(evapotranspiration) deficit functions (described in Harikishan and Husak
2014) using the extended hazard and exposure data (1981 onwards) for
the baseline scenario for the selected crops in the selected study areas
in the present study.

Drought vulnerability functions for maize in the Rift Valley province in
Kenya and Malawi; and for millets in Niger are depicted in Fig.2 (insets
a, b, and c) respectively. It can be observed from Table 1 that the
slopes of (yield loss coefficient) Ky for maize among the countries are
different, indicating different rates of yield losses due to drought. The
average slope of the drought yield-loss function for maize in Kenya and
Malawi is about 10% more than that that cited for maize by the FAO
(http://www.fao.org/nr/water/cropinfo_maize.html.)

A summary of the drought vulnerability models for each country is
presented in Table 1, which list the slope, intercept and r?2 between the
modeled relative evapotranspiration deficit and relative yield loss based
on the identified drought events.

The tabulated p-value indicates the high degree of significance obtained
in the statistical regression between the relative deficits in
evapotranspiration and the yields for the staple crops in the selected
countries. According to the p-values (Student t-test) listed in Table 1, it
can be seen that all the relationships can be considered significant at
5% level.

Table 1: Details of statistical regression between relative-yield deficit
with relative evapotranspiration deficit for maize and millets

Country Crop Slope r2 p-value

Rift Valley, Kenya Maize 1.3505 0.21 0.00040
Malawi Maize 1.4513 0.50 0.00003
Niger Millets 1.362 0.53 0.00005

Typically a WRSI less than 0.5 correspond to conditions nearing total
crop failure (Senay and Verdin 2002). In the present study, it can be
observed from inset (a) in Fig. 2 that the maize drought vulnerability
function in Rift Valley, Kenya shows the relative evapotranspiration
deficit (1-EOS WRSI) falling below 0.5. This indicates an increased
range of WRSI sensitivity to capture maize yield losses especially in
drought prone areas. Similar observation is also made for millets from
inset (c) in Fig. 2 where WRSI in the millets drought yield vulnerability
function goes below 0.5 showing increased sensitivity of WRSI.
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Fig.2 Drought vulnerability models for (a) maize in Rift Valley, Kenya,
(b) maize in Malawi, and (c) millets in Niger

Loss exceedance probability (LEP) curve is a probabilistic economic or
physical loss profile characterizing the response of a country (or a
region) to a particular disaster (natural or man-made). It explains the
probability that a given magnitude of loss will be exceeded in a given
time period. Loss may be expressed either in absolute magnitude
(tonnage of crop production lost or local or international currency) or in
relative terms (percent of total production or GDP and such).



LEP curve is a continuous probabilistic distribution function of drought-
induced losses; and in the present study it has been constructed in two
steps — (i) using historical drought events from the loss records
available in the country (or region), (ii) and simulated-loss data time
series corresponding to synthetic drought events. In addition, standard
loss metrics in terms of tonnage losses (production) as well as pin
percent of total crop production in the study regions for different return
periods (RP) of drought have also been tabulated. The two most
commonly used risk metrics are the average annual loss (AAL) and the
probable maximum loss (PML). AAL represents the yearly loss averaged
over a long period of time while the PML is associated with a 1-in-100
year drought in the context of agricultural drought (Harikishan and Husak
2014).

In this study, LEP curves corresponding to the baseline (1981 _2010) and
near-term (2016_2035) future climate scenario have been generated in
the following steps:

(i) develop drought vulnerability functions for maize in Rift Valley,
Kenya and Malawi; and for millets in Niger using CHIRPS data
(Section 4.3)

(it) develop national and local level historical drought event losses
using the historical exposure data and EOS WRSI corresponding to
baseline (1981 _2010) hazard data in the study area

(iii) generate long-term synthetic time series rainfall data (500 years)
applying boot strapping algorithms on CHIRPS data

(iv) run GeowRSI using 500 years of synthetic rainfall time series
(based 1981 2010 baseline data) to generate EOS WRSI time
series corresponding to above baseline period

(v) apply historical drought wvulnerability functions and generate
continuous LEP curve for the (1981 _2010) baseline scenario

(vi) run GeoWRSI wusing rainfall data corresponding to near-term
(2016_2035) climate scenario and generate corresponding drought
(EOS WRSI) hazard time series

(vii) apply historical drought vulnerability functions using hazard time
series (EOS WRSI) time series corresponding to near-term
(2016_2035) climate scenario

(viii) generate continuous LEP curve corresponding to near-term
(2016_2035) climate scenario for the selected crops in the selected
study areas

(ix) generate risk metrics (return period losses and drought frequency
maps) for comparative evaluation of agricultural drought risks
corresponding to the baseline (1981 2010) and near-term
(2016_2035) climate scenarios.

In addition to tabulating AAL and PML, return period losses - losses
corresponding to 1-in-10, 1-in-20, 1-in-50 and 1-in-100 year droughts
(both in terms of tonnage and percent of total crop production) have also
been listed. Average annual loss and drought frequency maps have also
been generated from the count (number of times) of drought-incidence in
the 500-year simulated time series corresponding to baseline
(1981 _2010) and near-term (2016_2035) climate scenarios in the present
study.



Fig. 3 portrays the LEP curves corresponding to historical event losses
(1981_2010) (blue dots); simulated LEP curve for baseline (1981_2010)
(black line); and simulated LEP curve for near-term (2016_2035)
scenario (red line) for maize in Rift Valley, Kenya. The losses have been
expressed in terms of metric tonnes. Fig. 4 depicts the above LEP
curves (in terms of percent of maize production in 2012) corresponding
to the baseline (1981 2010 in black) and near-future (2016_2035 in red)
climate scenarios in terms of percentages respectively.

Table 2 lists the province level return period losses corresponding to
annual, 1 in 5, 10, 20, 50 and 100 years for maize in Rift valley, Kenya
corresponding to baseline (1981 _2010) and near-term (2016_2035)
climate scenarios in absolute production losses (metric tonnes) and in
terms of percent of total maize production during 2012 in Rift Valley,
Kenya.

0.40

0.35
0.30 -
0.25 \

Exceedance 0.20
probability \

0.15

\
N

0 250,000 500,000 150,000 1,000,000 1,250,000

Maize production loss (T) (in terms of 2012 figures)

o 1951- 2010 simulated LEP curve @ Historical losses 1981-2010 o, 201 6- 2035 simulated LEP curve

Fig. 3 Loss exceedance probability curves for maize
corresponding to baseline (1981 _2010) and near-term
(2016_2035) climate scenarios in Rift Valley, Kenya
(expressed in terms of metric tonnes)

It can be observed from Fig. 3 and 4, and from Table 2, that agricultural
drought risk to maize is forecasted to reduce in the near-future
(2016_2035). The PML (Probable maximum loss corresponding to 1-in-
100 year drought) would reduce from 866,440 T (baseline) to 351,225 T
during 2016_2035 (near-future) in Rift Valley, Kenya
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The average annual loss (AAL) is projected to be 48,463 T (1.78% of the

total

maize production

in the Rift Valley Province) while

it is 78,190 T

(2.86% of the total maize production in Rift Valley Province).

Table 2: Return period losses for maize in Rift Valley, Kenya (Figures in
the brackets indicate losses in percent of total maize production in 2012
in the above region)

5.no Exceedance probability (EP) Return period (RP) Baseline losses Changing climate

(1981-2010) (T) (2016-2035) (T)

1 0.01 1 in 100 years 866,440 (31%) 351,225 (13%)

2 0.02 1 in 50 years 874,125 (25%) 333,145 (12%)

3 0.05 1 in 20 years 390,680 (15%) 263,400 (10%)

4 0.10 1 in 10 years 275,125 (10%) 179,400 (7%)

5 0.20 lin5 years 141,600 (5%c) 113,420 (4%)

6 Average annual loss AAL 18,190 (3%) 48,463 (2%)




Another significant observation is that the losses corresponding to
droughts with shorter return periods are almost similar in the two time
horizons, while losses corresponding to longer return periods (>1-in-5
tears) would decrease significantly in the near-future (2016_2035)when
compared to the baseline (1981_2010). For example, agricultural drought
risk corresponding to a 1-in-5 year drought would only reduce by 1% in
the projected near-future. However the losses corresponding to a 1 in 50
year would reduce by 50% i.e., losses in baseline scenario at 25% will
reduce to 12% in the near-term 2016_2035 climate scenario).

The positive impact of near-term climate change on maize productivity in
Rift Valley, Kenya is explained by comparing the projected dekadal
rainfall patterns in the 2016_2035 scenario with the corresponding
1981 2010 rainfall patterns. Fig. 5 depicts the dekadal bar charts in
Keiyo and West Pokot districts in Rift Valley Province from 10th dekad
(1st to 10th March) to 30t" dekad (20t"h to 31st October).
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Fig. 5 Dekadal rainfall patterns in Keiyo and West Pokot districts in Rift
valley, Kenya, corresponding to baseline (1981 2010) and near-term
(2016_2035) climate scenarios

Rainfall patterns in Kenya are governed by the annual migration of the
Inter-Tropical Convergence Zone (ITCZ) northwards and southwards of
the equator (Rao et al. 2014). Consequently there are two main seasons
- wet seasons (March to May) called long rains, and dry seasons
(October to December) called short rains respectively. It is seen that the
long rains contribute more than 70% to the annual rainfall while the
short rains make up the rest. Consequently, there are 2 major cropping
seasons in Kenya; the long rains season whose planting begins from
mid-March and the season ends in September/mid-October; while
planting in the short rains begins in mid-October and the season ends
the succeeding February in the Rift Valley, Kenya.

It can be observed from Fig.5 that the dekadal rainfall during the initial
part of the growth season (March to May) in the near-term (2016_2035)
climate scenario is relatively less compared to that in the baseline
(1981 _2010) scenario. It can be inferred that the maize cultivation will



be affected in its sowing stages with area being lost due to insufficient
rainfall in future. However, this lowered dekadal rainfall exists only till
the 18th dekad (end-of-June). In the latter part of the season) from 18th
dekad to 30th dekad, increases in the projected dekadal rainfall
(2016_2035) compared to baseline (1981 _2010) in the study area will
enhance the maize productivity in the Rift Valley Province in Kenya. As
maize yields are critically dependent on good root zone soil water
conditions during the flowering and grain filling periods of maize growth,
this projected increased dekadal rainfall during the potential crop yield
stages in the future provide evidence for the higher maize yields in the
near-term (2016_2035) climate scenario. Consequently, there would be
lower agricultural drought frequencies and risks i.e., lower return-period
maize production losses and lower AAL.

Rao et al. (2014) based on the DSSAT and APSIM simulations of climate
change impacts on principal rainfed crops (maize and groundnut) in
selected district in Ethiopia and Kenya, reported a positive impact of
climate change on maize productivity. The authors reported that the
projected rainfall for the future time horizons indicate increased wetness
on either side of the equators; however the projected rainfall decreases
with the distance from the equator. The DSSAT and APSIM model
projections for maize productivity indicated a 10-30% increase in maize
productivity because of the changing climate in the long rains season,
while an increase of 50-70% increase is projected in maize productivity
in the short rains in the study area. The above study validates the
results obtained in the present study.

Fig. 6 portrays the LEP curves corresponding to historical event losses
(1981_2010) (blue dots); simulated LEP curve for baseline (1981_2010)
(black line); and simulated LEP curve for near-term (2016_2035)
scenario (red line) for maize in Malawi. The losses have been expressed
in terms of metric tonnes. Fig. 7 depicts the above LEP curves (in terms
of percent of maize production in 2007) corresponding to the baseline
(1981 _2010 in black) and near-future (2016_2035 in red) climate
scenarios in percentages respectively.

Table 3 lists the country-level return period losses corresponding to
annual, 1-in-10, 20, and 50 for maize corresponding to baseline
(1981_2010) and near-term (2016_2035) climate scenarios in absolute
production losses (metric tonnes) and in terms of percent of total maize
production in 2007 in Malawi.

It can be seen from Fig.6 and 7 that there is a negative impact of
climate change on maize productivity in Malawi. It can be seen that
maize production loss for a 1-in-50 year drought in future climate
(2016_2035) is projected to be 441,800 T as compared to 363,800 T
estimated for the baseline (1981_2010). It is also observed that in the
baseline scenario (1981 _2010) Malawi loses about 102,900 T once every
10 years and this loss is going to increase to 159,500 T in the projected
near-future (2016 _2035) due to climate change. It can be observed from
Table 3 that the AAL will increase by about 1.4% (from current baseline
scenario at 5% to 6.4%) due to climate change in Malawi.
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Fig. 6 Loss exceedance probability curves for maize
corresponding to baseline (1981 _2010) and near-term
(2016 _2035) climate scenarios in Malawi (expressed in terms
of metric tonnes)
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Fig. 7 Loss exceedance probability curves for maize
corresponding to baseline (1981 2010) and near-term
(2016_2035) climate scenarios in Malawi (expressed as
percent of total maize production in Malawi)




Table 3: Return period

the above region)

losses

for maize

in Malawi

(Figures in
brackets indicate losses in percent of total maize production in 2007 in

the

S.no Exceedance probability (EP) Return period (RP) Baseline losses Changing climate
(1981-2010) (T) (2016-2035) (T)
1 0.02 1 in 50 years 363,800 (55.4) 441,800 (67.3)
2 0.05 1in 20 years 285,700 (43.5) 355,700 (54.2)
3 0.10 1in 10 years 102,900 (15.7) 159,500 (24.3)
4 Average annual loss AAL 33,115 (5.0) 42,055 (6.4)
Fig. 8 portrays the LEP curves corresponding to historical event losses

(1981_2010) (blue dots); simulated LEP curve for baseline (1981_2010)
(black line); and simulated LEP curve for near-term (2016_2035)
scenario (red line) for millets in Niger. The losses have been expressed

in terms of metric tonnes (T). Fig. 9 depicts the above LEP curves (in
terms of percent of millet production in 2007) corresponding to the
baseline (1981 2010 in black) and near-future (2016_2035 in red)

climate scenarios in terms of percentages respectively.

Table 4 lists the country-level return period losses corresponding to
annual, 1-in-10, 20, and 50 for millets corresponding to baseline
(1981 _2010) and near-term (2016_2035) climate scenarios in absolute

production losses (metric tonnes) and in terms of percent of total millet

production in 2007 in Niger.

Table 4: Return period losses for millets in Niger (Figures in the
brackets indicate losses in percent of total millet production in 2007 in
the above region)
5.no Exceedance probability (EP) Return period (RP) Baseline losses Changing climate
(1981-2010) (T) (2016-2035) (T)

1 0.01 1 in 100 years 880,100 (33%) 183,600 (29%)

2 0.02 1 in 50 years 778,000 (29%0) 649,500 (24%)

3 0.05 1 in 20 years 555,750 (21%0) 483,200 (18%)

4 0.10 1 in 10 years 443,800 (16.5%) 348,000 (13%)

5 0.20 1 in 3 years 251,650 (9.4%) 163,900 (6%:)

6 Average annual loss AAL 125,700 (4.7%) 88,385 (3.3%)
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Fig. 8 Loss exceedance probability curves for millets
corresponding to baseline (1981 _2010) and near-term
(2016 _2035) climate scenarios in Niger (expressed in terms
of metric tonnes)
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Fig. 9 Loss -exceedance probability curves for millets
corresponding to baseline (1981 _2010) and near-term
(2016_2035) climate scenarios in Niger (expressed as
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It can be seen from Fig.8 and 9 that there is a positive impact of climate
change on millet productivity in Niger. It can be seen that millet
production loss for a 1-in-100 year drought in future climate (2016_2035)
is projected to be 785,600 T as compared to 880,100 T estimated for the
baseline (1981 _2010). It is also observed that in the baseline scenario
(1981 _2010) Niger loses about 251,650 T once every 5 years and this
loss is going to decrease to 163,900 T in the projected near-future
(2016_2035) due to climate change. In case of millets in Niger the AAL
will decrease by about 1.4% (from current baseline scenario at 4.7% to
3.3%) due to climate change.

The positive impact of near-term climate change on millet productivity in
Niger is explained by comparing the projected dekadal rainfall patterns
in the 2016_2035 scenario with the corresponding 1981 2010 rainfall
patterns. Fig. 10 depicts the dekadal bar charts in Dogondoutchi and
Madarounfa districts Niger from 16" dekad (1st to 10th June) to 30th
dekad (20" to 31st October).
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Fig. 10 Dekadal rainfall patterns in Dogondoutchi and Madarounfa
districts in Niger corresponding to baseline (1981 _2010) and near-term
(2016_2035) climate scenarios

In Niger, planting of millet is spread between mid-June and mid-July
(18th to 21st dekads) and its harvest occurs from mid-September onwards
(Personal Communication, FEWSNET Representative in West Sahel). In
relation to the millet cropping calendar, it can be observed from Fig.10
that the dekadal rainfall during (June to September (JJAS) months are
consistently higher in the near-term (2016_2035) climate scenario when
compared to that in the baseline (1981 _2010) scenario; and this relative
increase is observed in all the districts in Niger. This projected increase
in the rainfall regime in near-future (2016_2035) leads to the positive
impact of climate change on millet production in Niger.



Funk et al. (2012) analyzed the historical and changing climate patterns
in Niger by conducting rigorous geo-statistical analysis of 110 years of
rainfall and temperature records using observations from 209 rain
gauges and 12 air temperature stations during the primary crop season-
June to September (JJAS). It is reported that decreasing rainfall trends
from 50s reversed in md-80s; and these have shown increasing trends
till the end of the first decade in the 21st Century. This increasing
rainfall trend (in the baseline time frame, 1981_2010) was attributed to
the warming of the northern Atlantic Ocean (NAO). The NAO has led to
increased temperatures during JJAS months, which in turn, have moved
the summer rains further northwards thus increasing rainfall in the above
months in the Sahel.

This section describes the impacts of the changing climate on rainfed maize and millet
productivity in the near-term (2016_2035) in economic terms (% of GDP of the
respective countries).

Table 5 lists the climate-change-induced return period losses (PML and
AAL) for droughts for maize in the Rift Valley, Kenya and Malawi; and for
millets in Niger expressed as percent of corresponding nation’s GDP.
The economic losses have been referenced to annual producer price of
maize and millets in 2007. Again, the PML and AAL have been explained
in terms of actual tonnage losses as well as in percent of GDP (2007
figures) corresponding to the Kenya, Malawi and Niger.

Table 5: AAL and PML metrics for maize and millet expressed in USD and
percent of GDP corresponding to Kenya, Malawi and Niger respectively.

GDP Annual
(Constant | producer
prices)** price ## AAL PML (1 in 100 year)
Climate Billion Million % Million %
Country | C1OP | Scenario USD” | usD/MT* MT USD | GDP MT USD GDP
\F;ifltl 1981_2010 78,190 16.7 | 0.07 | 866,440 184.6 0.82
Ko | Maize 22.504 213.0
A gg%’a' 2016_2035 48,463 103 | 0.05 | 351,225 74.8 0.33
Malawi- , 1981_2010 33,115 45 | 013 | 363,800 49.4 1.43
2007 Maize 3.458 135.9
2016_2035 42,055 5.7 0.17 441,800 60.0 1.74
Niger- ) 1981_2010 125,700 39.1 0.91 880,100 274.0 6.38
2007 Millets 4.291 311.3
2016_2035 88,385 29.3 0.68 785,600 260.3 6.07

** The country-wise GDP (in USD) for the selected crops in the African countries has been extracted from
http://data.worldbank.org/

## The annual producer prices for the selected crops in the selected years have been extracted from
http://faostat3.fao.org/faostat-gateway/go/to/download/P/PP/E

It is seen from Table 5 that the PML for Rift Valley, Kenya decreases
from about 1% of the national GDP to 1/3rd (0.33%) in the near-future
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due to droughts caused by climate change in this region. However the
AAL decreases from 0.07% to 0.03% due to climate change impacts on
maize in this Province. On the other hand, the PML increases from 1.43%
of Malawian GDP to 1.74% during the 2016_2035 due to climate change
impact on maize productivity due to droughts; while the AAL increases
marginally from 0.13% to 0.17% in the near-future (2016_2035) due to
climate change impact on the above crop. In the case of Niger, the AAL
reduces from nearly 1% to 0.68% of GDP (2007 figures) due to climate
change impact on millet productivity in the 2016_2035 time horizon. The
PML will reduce from about 6.4% to 6.1% of the Niger GDP due to
drought-induced <changes on millet productivity in the near-term
(2016 _2035) future climate scenario in Niger.

Agricultural drought risk profiling, when compared to other risk
assessments like floods and cyclones, is a difficult task due to its
masked onset, creeping growth, and non-linear vulnerability of rain-fed
crops to soil moisture deficits during the crop growing season. While
floods and cyclones have well defined zones of vulnerability causing
physical damage to «crops, agricultural drought damage is more
complicated as firstly, its damage is physiological in nature; secondly,
its characteristics vary widely in spatio-temporal space; and thirdly, the
crop resilience makes it a complex phenomenon to model. In addition to
the above, idiosyncratic factors like data-reporting, recording, and re-
conciliation habits and practices affect the modeling efforts. There are
two major approaches to agricultural drought risk modeling — (i) run a
high-frequency high-resolution input based crop process model to
monitor the agricultural crop performance, or (ii) conduct an ex-post
analysis of the historical drought-induced crop losses to understand the
crop response in a given region.

This paper is a follow-up of the Phase 1 of UNISDR-FEWSNET
collaborative study on developing and using probabilistic agricultural
drought risk assessment for maize in Kenya, Malawi, and Mozambique,
and for millets in Niger. The objective in phase 2 of this study was to
ascertain drought LEP curves corresponding to the baseline (1981_2010)
and near-term (2016_2035) future climate scenario for maize and millets
in the above countries. This paper presents the results of phase 2
obtained by using water requirement satisfaction index (WRSI) as the
hazard index derived from satellite estimated rainfall (Climate Hazards
group InfraRed Precipitation with Stations, CHIRPS). While phase 1
study was accomplished by using satellite RFE data (2001 _2010), phase
2 was completed by using CHIRPS data (1981 2010). The backpolated
data from 1981 has proven to be a valuable tool for calibrating the maize
and millet drought vulnerability models in this study.

Long term synthetic time series of dekadal rainfall has been generated
using random boot strapping technique to develop continuous LEP curves
for baseline (1981 _2010) scenario. A host of GCMs are available, along
with downscaling techniques, detailing the anticipated representative
concentration pathways (RCPs) and projecting corresponding near- and
far-term climate scenarios in the literature. However, towards assessing
the impacts of changing climate on maize and millet productivity in near-
term (2010_2035) scenario in the selected study areas, the Climate



Hazards Group of University of California, Santa Barbara and FEWSNET
adopted a decadal-to-multidecadal (D2M) approach to generate
multivariate stochastic climate sequences representing the 2016_2035
rainfall regime in the study areas.

The historical hazard time series (1981 _2010) and the actual event
losses were first used to construct crop specific drought vulnerability
models. The hazard (WRSI) time series corresponding to the synthetic
rainfall time series for baseline (1981 _2010) and near-term (2016_2035)
climate scenarios were converted into synthetic drought event losses.
The historical and synthetic drought event losses have been used to
generate corresponding representative LEP curves for maize and millet
in the study areas. The comparative analysis of the LEP curves and risk
metrics (return period losses, PML and AAL) have been tabulated
accordingly. Drought frequency maps indicating the drought return
intervals at district-level have been generated highlighting the
agricultural drought risk characteristics of maize and millet in the
respective study areas. The risk metrics have been tabulated in terms of
actual tonnage losses; as percent of total crop production; in
international monetary units (USD); and as percent of GDP (2007
figures) of the respective countries.

It is important to note that the agricultural drought risks obtained in
each study area are restricted (in their interpretations) to that area. For
example, the maize drought vulnerability function developed for the Rift
Valley Province, Kenya is restricted to that Province alone as it has
been derived using the loss data pertaining only to that region; and if
the study area is enlarged then the vulnerability function will change,
which in turn will affect all subsequent computations using the above
function. Further research is necessary to ascertain the agricultural
drought risks characteristics in the remaining drought prone provinces in
Kenya.

The maize drought LEP curve and the derivatives - risk metrics in Rift
Valley Province, Kenya, show a positive impact of climate change on the
maize productivity in that Province (this was explained on the basis of
seasonal dekadal rainfall distribution in the projected near-term future
climate (2016_2035)). Although relatively lower dekadal rainfall till mid-
season was projected in the initial dekads (in 2016_2035), however
increased rainfall during the latter part of the growing season, especially
during the flowering and grain filling stages, are expected to increase
the maize productivity (in 2016_2035) in this region. While the maize
production losses corresponding to short-return period droughts (up to 1-
in-5 years) are observed to be the same for both baseline (1981 _2010)
and near-term (2016_2035) climate scenarios, however there is a
significant decrease in return period maize production losses for larger
return periods in this region.

In Malawi, the changing climate (2016_2035) is projected to have a
negative impact on maize productivity in Malawi. On the other hand, In
Niger, climate change is expected to have a positive impact on millet
productivity. Decreases in millet production losses corresponding to
different drought return periods as well as PML and AAL in the projected
near-future (2016_2035) have been explained using the seasonal dekadal
rainfall characteristics in Niger.



The availability and use of hazard and exposure data base from 1981 has
enabled to develop more robust drought vulnerability functions in this
study. In addition, more robust LEP curves have been generated and the
corresponding risk metrics tabulated. It is essential to extend this
methodology to other rain-fed crops in the selected countries (and other
drought-prone ones as well) in order to establish each country’s
agricultural drought risk profile for reliable planning, monitoring and
evaluation of adaptation measures.
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A.l Hazard analysis

In this study, the end-of-season WRSI (EOS WRSI) output from the
GeoWRSI| software (Magadzire 2009) was used as the agricultural
drought hazard index. In its simplest form, the EOS WRSI| represents the
ratio of the seasonal actual crop evapotranspiration to the seasonal crop
water requirement (Doorenbos and Kassam 1979). Optimal crop yields
are associated with WRSI value of 1 as they represent a situation of ‘no
water deficit’ while a value less than 1 is associated with reduced crop
yields. A seasonal WRSI value less than 0.5 was observed as a crop
failure condition (Smith 1992).

The actual evapotranspiration (AET) represents the actual soil water
extracted by the crop from its root zone. In this regard, GeoWRSI| uses
the crop coefficients published by FAO for maize (corn), sorghum,
millets, wheat, etc. (http://www.fao.org/nr/water/cropinfo_maize.html).
Soil water accounting in the crop root zone in GeoWRSI| consists of
assessing the water supply using satellite estimated rainfall (Magadzire
2009), the pre-existing soil water conditions in the root zone, the crop
water demand (satellite estimated PET in conjunction with corresponding
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FAO coefficients for maize and millets), and the actual
evapotranspiration on a 10-day (dekadal) basis.

The iterative water budgeting exercise in the crop root zone is
initiated when the first dekad with more than 25 mm of rain is followed
by two dekads with a total rainfall of at least 20 mm. The above criterion
signifies the onset of the crop season (start of season or SOS) by filling
the crop root zone to its field capacity and ensures most favorable soil
moisture conditions for crop emergence. The water budgeting process
continues on a dekadal time-interval wuntil the end of the <crop
phenological cycle as identified by the length of the growing period
(LGP). Water budgeting continues through the end-of-season (EOS)
which is attained by adding LGP to the SOS at each grid cell. The
computational methods used in grid cell soil water accounting, the data
used, and the underlying assumptions in GeoWRSI| (Magadzire 2009).

This study used the FEWS NET LGP information, provided as part
of the GeoWRSI software package, which blends available FAO products
with information from field representatives who work <closely with
national agricultural services in Africa. The GeoWRSI| program was run
using default settings for field information (length of growing season,
crop type, and crop season) and was run over the study areas for the
last 10 years (2001-2010). Each dekadal WRSI as well as the EOS WRSI
statistics have been spatially averaged over each of the second sub-
national districts (18 districts in the Rift Valley province in Kenya; 35
districts in Malawi; 132 districts in Mozambique excluding the urban
districts; and 30 Departments in Niger). The resulting statistics generate
district and regional WRSI profiles helping to understand the drought
incidence and persistence in each location.

A.2 Exposure analysis

Exposure data has been collected from the respective Ministries of
Agriculture in Kenya, Malawi, Mozambique and Niger. These data provide
an inconsistent record of cropped area and production, because they are
not available for many years in the above countries. The maize area and
yield statistics are available from 1984 to 2009 in Malawi; from 2000 to
2009 in Mozambique; however, are only available from 2000 to 2006 in
Kenya. The millets area and yield statistics are available from 1984 to
2009 in Niger. Mapping these statistics provides spatial context to the
tabular data, and gives the user a sense for the major cropping zones
within each respective country.

World Bank report stated that there have been 6 major drought
events in Malawi during 1982-2008 (Clarke 2012). The economy-wide
impacts of extreme hydro-meteorological events on crop production in
Malawi and Mozambique are listed in [26]. Adopting an ex-post analytical
approach, the <crop production losses during the crop seasons of
1986/87, 1991/92, 1993/94, 2003/04 and 2004/05 were analyzed to
evaluate the direct and indirect economic losses. The World Bank report
observed that the drought impact on crop production in Malawi was
reflected more prominently in the rain-fed crop yields than in rain-fed
crop areas.



A.3 Vulnerability analysis

Disasters, in the context of system disaster theory, have been
explained (Shi 2005) as <consequences of the hazard-formative
environmental stability, the hazard risk, and the vulnerability of the
exposure. The hazard risk has been expressed as a product of hazard
and vulnerability; with hazard of a given magnitude causing more
damage to more vulnerable assets-at-risk. There are two broad
methodological approaches for agricultural drought vulnerability
assessment: the analytic hierarchy process (AHP) and the vulnerability
curve method (Pauw et al. 2010).

The analytic hierarchy process (AHP) is a multi-objective decision-
making method that delaminates the problem into a multi-layered
hierarchical ladder (Cheng and Tao 2010). A matrix consisting of the
causative factors is first constructed; appropriate weights are then
attributed to the factors at all levels based on field experience and
knowledge, and the most representative sequencing is obtained through
optimization to model the vulnerability of the system. On the other hand,
the vulnerability curve method expresses drought vulnerability as a
statistical function between the hazard index and drought-induced
reduction in crop production in the study areas. Developing an objective
and reliable vulnerability model requires 20-30 years of continuous and
error-free crop area and production datal,2 along with corresponding
hazard data, ideally capturing at least six to seven drought events.
However, the research presented here is limited to the overlapping
period of available crop statistics and the RFE2 database, which limits
the present analysis from 2001 to 2009 for Malawi, Mozambique and
Niger, and 2001 to 2006 for Kenya.

The modeling of the vulnerability relationships has been based on the
FAO guidelines for determining relative yield deficit and relative
evapotranspiration deficit (http://www.fao.org/nr/water/cropinfo_maize.html). The
steps followed in establishing the vulnerability model are as follows:

e Calculate spatially averaged EOS WRSI statistics for the selected
administrative zones.

e Determine the relative evapotranspiration deficit by calculating (1-
EOS WRSI).

e Analyze crop production data to determine the drought incidence
according to reductions in crop production as identified by
corresponding EOS WRSI. This subset of selected years of drought
related losses by district are the events used in present drought
risk analysis (both for maize and millets).

e Select reference yield (Yreference) using the crop yield
corresponding to the most temporally proximate season which is
neither affected by drought nor flood. The reference yield
represents the crop yield obtained in the absence of drought at
that location. The yields affected by non-water stress related
causes like pests and diseases are ignored in this subset.

e Calculate the relative yield loss (1-Yactual/Yreference) CcOrresponding
to the identified drought years for the identified events.
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Develop a statistical relationship between the relative vyield
deficits (maize and millets separately) with the corresponding EOS
WRSI for each event.

Estimate the total drought-induced loss in crop production using
the potential crop area in the selected district. Potential crop area
is the amount of land likely to be sown in the absence of drought in
the region.



